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NATIONAL AERONAUTICS AND SPACE ATMINISTRATION

TECHNICAL NOTE D-151

COMBINED OPERATIONS WITH AND WITHOUT AFTERBURNING
FOR MINIMUM FUEL CONSUMPTION IN LEVEL FLIGHT

By Angelo Miele and Carlos R. Cavoti
SUMMARY

The present report contains a preliminary analysis of combined
operations with and without afterburning with regard to maneuvers of
minimum fuel consumption. The simple case of level flight is investi-
gated and the optimizing condition determined. A general procedure is
developed for computing the special Mach number at which the transition
from nonafterburning operations to afterburning operations must occur.
It is shown that the altitude-Mach number plane can be divided into a
number of basic regions, in each of which a preferred mode of operation
exists for the engine. Several numerical examples are included illus-
trating the general theory and supplying a tangible proof of the minimal
character of the solution.

INTRODUCTION

An important characteristic of some modern types of turbojet engines
is that they embody that device of thrust augmentation which is commonly
known as afterburning. As a result of the low fuel-to-air ratios used
in turbojet engines, the products of combustion leaving the turbine con-
tain enough unburned air to support further combustion. By an appropri-
ate injection of fuel into the tail pipe the thrust can be considerably
increased at the expense, however, of a decrease in the overall efficiency
of the engine. In a typical case the afterburner increases the thrust by
as much as 40 percent at M = 0, 70 percent at M =1 and 100 percent at
M = 2. The rate of fuel consumed per unit time (product of thrust times
specific fuel consumption), however, increases by approximately 160 per-
cent at M =0, M=1, and M = 2.

Clearly, the afterburning device is of interest in all those cases
where superperformances are in order. TFor instance, the maximum speed of
an aircraft can be considerably improved over short periods of time by
the use of methods of thrust augmentation; analogously, the time necessary
for a typical fighter interceptor to accelerate and climb can be shortened
to a suvbstantial extent.



In the present report, problems of minimum fuel consumption are
considered and the possibilities arising from combined operations with
and without afterburning explored. The key idea is that, for an air-
craft which must be transferred from one condition of flight to another,
any increase in energy height |he = h + %Z may become rather expensive
in terms of fuel if a portion of the trajJectory is to be flown without
afterburning in the so-called critical region (fig. 1). The latter,
within the context of the present report, is approximately defined as
that region of the altitude-Mach number plane which is in immediate
contact with the geometrical locus of the points where T - D=0, T
being the thrust without afterburning and D the drag. As is known the
drag D splits into zero-lift drag and induced drag. The latter is
computed by approximating the equation of motion on the normal to the
flight path as L - W = 0.

Starting with a simple physical scheme, the problem of the accel-
eration in level flight from one velccity to another is investigated.
This investigation was conducted at Purdue University under the sponsor-
ship and with the financial assistance of the National Advisory Committee
for Aeronautics.

SYMBOLS
a speed of sound, ft sec™t
c specific fuel consumption, sec-l
Cp drag coefficient
Cy, 1ift coefficient
D drag, 1b
g acceleration of gravity, ft sec?
h altitude above sea level, ft
K ratio of induced drag coefficient to square of 1lift
coefficient
L 1ift, 1b

M Mach number

O+ =



N+ X

o)

T
Superscript
)
Subscripts
i

f

atmospheric pressure, lb £t-2

weight of fuel consumed per unit time, 1b sec™!
air constant, £t2 sec-2 OR~1

reference surface, £t°

time, sec

thrust, 1b

flight velocity, ft sec™t

weight of aircraft, 1b

weight of fuel consumed, 1b

derivative of air temperature with respect to altitude,
oR ft-1

ratio of specific heat at constant pressure to specific
heat at constant volume

parameter defined by equation (22)

ratio of pressure at altitude h to pressure at the
tropopause hyx
absolute density of air, 1b ft'u sec?

absolute temperature of air, °R

flight condition with afterburner cperating

initial point
final point

transition point from operation without afterburner to
operation with afterburner and vice versa



condition at tropopause

0 zero-1ift condition or sea-level condition
FUNDAMENTAL HYPOTHESES AND EQUATIONS OF MOTION

In the present report a level flight trajectory flown over a short
period of time is analyzed. As a consequence, the welght W of the
aircraft is regarded as a constant in the equations of motion. The
turbojet-powered airplane is thought of as a particle. The small angle
between thrust vector and velocity vector is neglected. The aerodynamic
lag is disregarded, that is, 1ift and drag forces are calculated as in
unaccelerated flight.

It is assumed that the turbojet engine may develop two levels of
thrust, one without afterburning and another one with afterburning. For
the operation without afterburning the thrust T, the specific fuel
consumption c¢, and the rate of fuel flow q are assumed arbitrary but
specified functions of the following type:

T = T(V,h) (1)
c = c(V,h) (2)
q = T = q(V,h) (3)

where h 1is the flight altitude. Analogous hypotheses are accepted for
the operation with afterburning (in general T and T are analytically

different functions of velocity and altitude; the same remark applies to
¢ and &):
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= T(V,h) (&)

(]
I
(¢
—~
<3
=3
~

(5)

qQ=cT = Q(Vyh) (6)

N+ =
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where

The equation of motion on the tangent to the flight path is written
as:

_p -¥av
T-D-4& -0 (7)

ot

for the operation without afterburning and as

ot - (8)

for the operation with afterburning. The attendant equation on the
normal to the flight path is

L-W=0 (9)

In addition, the relationship between drag and 1ift is assumed to have
the form

D = D(V,h,L) (10)
OPTIMIZING CONDITION
The following functions are now defined:
= _L (]_]_)
g(T - D)
§ - __ (12)
g(T - D)

® refers to engine operating without afterburning and ? to

engine operating with afterburning. After accounting for equations (l),

(3), (&), (6), (9), and (10), and eliminating the 1ift, one concludes
that for a given weight the two functions

¢ and & have the form:



©
|

= ¢(V,h) , (13)

©
1

o(V,h) (14)

Assume now that the aircraft is to be transferred from an initial condi-
tion of flight (h,Vi) to a final condition of flight (h,Vs) at constant

altitude. Assume also, for the sake of discussion, that the velocity
interval (V;,Vy) is flown without afterburning, while the velocity

interval (Vt,Vf) is flown with afterburningl. The total weight of fuel
consumed is given by:

ty tr Vi Ve
We + W = q dt + g at = o(V,h)av + o(V,n)av (15)

ty ty, Vs Vi

Clearly, for given values of V; and Vg equation (15) takes the form:

We + We = £(Vy,h) (16)

As a consequence, a necessary condition to the existence of an extremum
for the weight of fuel consumed is that

B(Wf + ﬁf)
s - 0 (17)

where the partial derivative is to be computed at constant altitude.

-applying the general theorem of derivation under an integral sign, one
obtains:

By

(¢ - 0)y =0 (18)
that is,

cT _ ET =0 19
(T -D T - D)'t ( )

is the transition speed from one regime of opera-

lThe velocity Vi
tion to another.

N = E
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With reference to the altitude-velocity plane or to the altitude-Mach
number plane equation (19) defines the geometrical locus of the points
where the transition from operation without to operation with after-

burning must occur, if accelerated maneuvers of minimum fuel consumption
are desired.

SOLUTION OF EQUATION DEFINING TRANSITIONAL SPEED

For a given altitude h the transition speed V¢ from operation

without afterburning to operation with afterburning is defined by equa-
tion (19). The latter must be generally solved by approximate methods.
Nevertheless, by making suitable hypotheses about drag, thrust, and

specific fuel consumption, considerable strides can be taken toward
analytical solutions.

Drag Function

A parabolic relationship is now assumed between lift coefficient CL
and drag coefficient Cp:

Cp = Cpo(M) + K(M)C2 (20)

Both CDo and K are assumed to depend on the Mach number M only.

After accounting for equations (9), (10), and (20) the drag function
is written as:

2 x K A
D ={c ML 4 B My 21
(DO A M2ﬂ) (1)
where
W
?\:— 22
- (22)
*
b
N = — 2
> .(5)



In the above equations p is the static pressure at altitude h and
p, ‘the static pressure at the tropopause hy.

Thrust Function

With the object of deriving simple solutions, the thrust is assumed
to be the product of a function of the Mach number only times a function
of the density ratio only. The first function is regarded as identical
with the thrust at the tropopause. The second function is considered a

power of the density ratio only: Y
X 1
T - T*(M)("—) = T ()™ (24) 6
Py :
— X —_
T = T*(M)(—p—> = Ty (M)n™ (25)
Py
aR 1
m=1+ % (26)
g

In the above equations R = p/pT the air constant and o the deriva-
tive dﬁ/dh of the absolute temperature T with respect to altitude h

(-0.00%566 ©R ft'l for troposphere; O OR £t~1 for isothermal strato-
sphere). Typical values for the x exponent are: x = 0.75 for tropo-
spheric flight and x = 1 for stratospheric flight. The m constant
is m = 0.8097 for the troposphere and m = 1 for the isothermal
region of the stratosphere.

Specific Fuel Consumption Function

With regard to the specific fuel consumption, the following function
is assumed:

c = c*(M)<él)y = é*(M)ﬁmy (27)
g = a*(M)(é’;)y = &, (M)x™ (28)

where y 1is an appropriate constant (typical values: y = 0.15 for
tropospheric flight; y = O for stratospheric flight). -
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Generalized Solution
After accounting for equations (21) to (28), equation (19) can be
rewritten? as

nl+mx - Aﬂ2 -B =0 (29)

where

6-)(- T*
2 _—
Cn-M= C T
Do x k. op(M) (30)
kgk- C*
w — -1
Cx
c, T
> =
C T,
B = K}r X 7% _ B(M) (31)
M2 o 91 -1
W Cx

Stratospheric flight.- For flight in the isothermal region of the
stratosphere m = x = 1 equation (29) can be solved in terms of the
relative pressure:

n = (32)

As a consequence, the relationship between altitude and Mach number is
written as:

i s B 1-a
h = hy + 2 log 5 (33)

Tropospheric flight.- For flight in the troposphere, the transi-
tional speed equation must be solved by approximate procedures. Notice

2The subscript t denoting transitional condition is now dropped,
since there is no longer any possibility of ambiguity.
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that, given the aircraft and the engine, equation (29) is represented
by a family of straight lines in the AB plane, namely one straight line
for each value of the pressure ratio = (fig. 2).

In the case where the transition speed Vt is to be calculated for

several values of the altitude h, the following indirect procedure is
appropriate:

(1) select an arbitrary Mach number and compute the two functions
A(M) and B(M);

(2) Enter into figure 2 and determine the pressure ratio corre-
sponding to the established Mach number.

In view of the graphical operations involved in step (2), the above
method yields an approximate value for the pressure ratio mng. Never-

theless, the inherent error can be corrected by writing the exact solu-
tion of equation (29) in the form:

o= (1l + ) (34)

The correction term 8 << 1 can be computed by introducing equation (34)
into equation (29) and linearizing the latter into:

nal+mx[l + (1 + mx)] - Ang2(1 + 28) -BTO (35)
As a consequence, the correction & is:

2 L+mx
5 B+ Ang™ - ng

~ (36)
(1 + mx)p X _ 2A:ra2

WEIGHT OF FUEL CONSUMED

Under the same hypotheses, as stated earlier, the below indicated
expression can be derived for the weight of fuel consumed. Reference
is made to the portion of the flight path flown without afterburning:

O\~ =



O\ = =
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e o 1,
W a*c-)(- my + = C* T.x. :
L= —on e o "o (37)
g T 2 -
. *x W CDoMﬂl—mx + EA - (1+mx)
1 T T | M2

In the above equation ay denotes speed of sound calculated at h = hy,

Cy specific fuel consumption at h =h, and M =0, and T, thrust
o e}

at h =hy and M = 0. An analogous expression can be derived for the
portion of the flight path flown with afterburning.

UNACCELERATED LEVEL FLIGHT EQUATION

It is of interest to note that the general procedure developed
earlier for solving the transitional speed equation can also be used
< I == =2 —~ [ P -~ [RTS SE ey - £ o PN [ [T R | R | L . A LY ey Y Al
10T S04ViNng ThNe €Juation 01 TNe€ unacceleracea Level 1.1igne 10r ooia one
nonafterburning case and the afterburning case.

With reference to the nonafterburning case, the steady flight at
constant altitude is defined by equations (9), (lO), and by the fol-
lowing additional expression

T -D=0 (38)

Under the stated hypotheses for the drag and thrust functions, equa-
tion (3%8) can be reduced to the form represented by equation (29). The
two functions A and B, however, modify into:

CDoM2
A== (29)
A X
W
B = ;1(_2 Tl (40)
C
W

Concerning the stratospheric case, equations (32) and (33) are still
valid, with A and B defined by equations (39) and (40). For the
tropospheric case the general procedure of the section entitled
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"Tropospheric flight" is also valid with particular reference to the use
of figure 2 and equations (34) to (36).

Analogous remarks refer to the solution of the unaccelerated level
flight equation with thrust augmentation, the only difference being that
T and T, must be replaced with T and T,.

DISCUSSION OF RESULTS

With the object of illustrating the previous theory, a numerical
example is carried out for the below indicated set of conditions.

The aircraft is represented by

A =0.233 Cpy, = 0.02 K, = 0.212 (1)

the assigned value for A corresponding to a wing loading

W/s = 80 1b £t™2. The symbols Cp,, and K, denote values of Cpq
and K calculated at M = 0. The two ratios CDO/CDOO and K/Ko are
represented in figure 3 as functions of the Mach number.

The engine is represented by

T Ccy, 8
2o - 0.235 ¥o * _ 0.0069 (42)
W g
T [
o _ 1. o _1.9 (43)
T*O *O

The two ratios T*/T*o and i;/i;o are plotted in figure L as functions
of the Mach number M; the other two ratios C*/C*o and E;/E;O are

indicated in figure 5.

Starting from the above data equation (29) is solved at various
altitudes for three specific cases: best transitional speed, unacceler-
ated level flight without afterburning, and unaccelerated level flight
with afterburning. The results of numerical computations are indicated
in figure 6 in the altitude-Mach number plane.

N\ H =
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Notice that the three curves T -D =0, T-D=0 and & -3 =0
split the hM plane into the four regions A, B, C, and D endowed with the
following properties:

(l) In the regions A and B accelerated flight occurs both with
afterburning and without afterburning.

(2) In region C accelerated flight is possible only with afterburning.
(3) In region D only decelerated flight occurs.

If accelerated maneuvers of minimum fuel consumption are desired, the
following rules must be kept in mind:

(1) All portions of the flight path which belong to the region A must
be flown without afterburning.

(2) All portions of the flight path which belong to regions B and C
must be flown with afterburning.

(3) The switching from one regime of operation to ancther must occur
along the line @ - & = O.

Specific Examples for Prescribed Set of End Conditions
Some specific numerical examples are now presented (fig. 6).

(1) Assume that the flight altitude is h = 40,000 feet, that the
initial Mach number is M; = 0.8 and that the final Mach number is

Mgy = 2. The initial point I belongs to region B and the final point F
to region C. As a consequence, the optimum path IF is to be entirely
flown with afterburning (solid line of fig. 6).

(2) Consider the case where the flight altitude is h = 30,000 feet.
Assume M; = 0.6 and Mp = 2. The initial point I belongs to region A

and the final point F to region C. The optimum path ITF includes a por-
tion IT flown without afterburning (dotted line) and a portion TF flown
with afterburning (solid line), the transition occurring at Mach number
Mt = 0.95. The associated distribution of thrust is indicated in figure 7.

(3) Consider the case where the flight altitude is h = 10,000 feet,
M; = 0.4, and My = 0.8. Both the initial point I and the final point F

belong to the region A. As a consequence, the optimum path IF is to be
entirely flown without afterburning (dotted line of fig. 6).
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Numerical Check of Minimal Character of Solution

In order to verify the minimal character of the solution, the second
example of the preceding section is considered h = 30,000 feet,
Mj = 0.8, and My = 2. Transition Mach numbers other than the optimum

M; = 0.95 are assumed and the function:

EAAERY T ()

is computed and plotted in figure 8. The latter points out the following
concepts:

(l) The transitional solution ¢ - & = O minimizes the fuel
consumed.

(2) A shifting in the transition Mach number with respect to the
optimum one may cause a considerable increase in fuel consumed if the
transition point penetrates into the so-called critical region, as
defined in figure 1.

CONCLUSIONS

Combined operations with and without afterburning are analyzed in
connection with the problem of accelerating an aircraft in level flight
from one velocity to another.

A general procedure is developed for computing the transitional
speed; that is, the velocity at which the switching from nonafterburning
operations to afterburning operations must occur for minimum fuel
consumption.

Several regions are detected in the altitude-Mach number domain,
in each of which a preferred mode of operation exists for the engine.
Numerical examples are included, illustrating the general theory and
confirming the minimal character of the solution.

Purdue University,
Lafayette, Ind., April 22, 1958.
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Figure 8.- Influence of transition Mach number on fuel consumed while
accelerating.

NASA - Langley Field, Va. W—ll6




